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We consider the fractional generalizations of the phase volume, volume element, and Poisson brackets.
These generalizations lead us to the fractional analog of the phase space. We consider systems on this fractional
phase space and fractional analogs of the Hamilton equations. The fractional generalization of the average
value is suggested. The fractional analogs of the Bogoliubov hierarchy equations are derived from the frac-
tional Liouville equation. We define the fractional reduced distribution functions. The fractional analogs of the
Vlasov equation and the Debye radius are considered.
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I. INTRODUCTION

Derivatives and integrals of fractional order have found
many applications in recent studies of scaling phenomena
f1–6g. In Ref. f7g, coordinate fractional derivatives in the
Fokker-Planck equation were used. It is known that Fokker-
Planck equation can be derived from the Liouville equation
f8g. The Liouville equation is derived from the normalization
condition and the Hamilton equationsf9g. In the Hamilton
equationdqk/dt=pk/m, dpk/dt=Fksq,pd we have only the
time derivatives. The usual normalization condition leads to
the usualsnonfractionald Liouville equation. If we would like
to derive the fractional Liouville equation then we must use
a fractional normalization condition. In Ref.f10g, the frac-
tional Liouville equation was derived from fractional nor-
malization condition.

The natural question arises: What could be the physical
meaning of the fractional normalization condition? This
physical meaning can be the following: the system is to be
found somewhere in the fractional phase space. The frac-
tional normalization condition can be considered as a nor-
malization condition for the distribution function in a frac-
tional phase space. In order to use this interpretation we must
define a fractional phase space. The first interpretation of the
fractional phase space is connected with fractional dimension
space. The fractional dimension interpretation follows from
the formulas for dimensional regularizations. This interpreta-
tion was suggested in Ref.f10g. In this paper we consider the
second interpretation of the fractional phase space. This in-
terpretation follows from the fractional measure of phase
spacef10g that is used in the fractional integrals. The frac-
tional phase space is considered as a phase space that is
described by the fractional powers of coordinates and mo-
mentasqk

a ,pk
ad. In this case, the fractional normalization con-

dition for the distribution function and the fractional average
values are considered as a condition and values for the frac-
tional space. In general, these systems are non-Hamiltonian
dissipative systems for the usual phase spacesq,pd.

It is known that Bogoliubov equations can be derived
from the Liouville equation and the definition of the average

valuef11–14g. In Ref. f10g, the fractional Liouville equation
is derived from the fractional normalization condition. In this
paper we define the fractional analog of the average value
and reduced distributions. Then we derive the fractional Bo-
goliubov equations from the fractional Liouville equation
and the definition of the fractional average value. We derive
the fractional analog of the Vlasov equation and the Debye
radius.

In Ref. f10g, the Riemann-Liouville definition of the frac-
tional integration and differentiation is used. Therefore in
this paper we use this definition of fractional integration and
differentiation.

In Sec. II, we define the fractional phase space volume.
The fractional phase volume element for the fractional phase
space is considered. We define the fractional analog of the
Poisson bracket. In Sec. III, we consider the fractional sys-
tems. We discuss the free motion of the fractional systems,
the fractional harmonic oscillator and fractional analog of the
Hamiltonian systems. In Sec. IV, the fractional average val-
ues and some notations are considered. We define the re-
duced one-particle and two-particle distribution functions. In
Sec. V, the fractional Liouville equation forn-particle system
is written. We derive the first fractional Bogoliubov equation
from the fractional average value and the fractional Liouville
equation. The second fractional Bogoliubov equation is con-
sidered. In Sec. VI, we derive the fractional analog of the
Vlasov equation and the Debye radius for fractional systems.
Finally, a short conclusion is given in Sec. VII.

II. FRACTIONAL PHASE VOLUME
AND POISSON BRACKETS

A. Fractional phase volume for configuration space

Let us consider the phase volume for the region such that
xP fa;bg. The usual phase volume is defined by

V1 =E
a

b

dx=E
a

y

dx+E
y

b

dx. s1d

The fractional integrations are definedf16g by

Ia+
a 1 =

1

GsadEa

y dx

sy − xd1−a ,
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Ib−
a 1 =

1

GsadEy

b dx

sx − yd1−a .

Using these notations, we get Eq.s1d in the form

V1 = Ia+
1 1 + Ib−

1 1. s2d

The fractional generalization of this phase volume can be
defined by

Va = Ia+
a 1 + Ib−

a 1. s3d

The fractional phase volume integrals3d can be written in
the form

Va =
1 + la

Gsad E0

b−y

ja−1 dj, s4d

wherel is defined by

l =
y − a

b − y
.

In order to have the symmetric limits of the phase volume
integral we can use the following equation:

Va =
s1 + lad

2
E

−sb−yd

+sb−yd

dmasxd, s5d

where

dmasxd =
uxua−1 dx

Gsad
=

dxa

aGsad
. s6d

Here we use the following notation for fractional power of
coordinates:

xa = bsxdsxda = sgnsxduxua, s7d

wherebsxd=fsgnsxdga−1. The function sgnsxd is equal to +1
for xù0, and this function is equal −1 forx,0.

B. Fractional phase volume for phase space

Using Eq. s5d, we have the phase volume for the two-
dimensional phase space in the form

Va =
s1 + lq

ad
2

s1 + lp
ad

2
E

−sqb−y8d

sqb−yd E
−spb−y8d

spb−yd dqa ∧ dpa

faGsadg2 , s8d

where

dqa ∧ dpa = a2uqpua−1 dq∧ dp. s9d

The fractional measure for the regionB of 2n-dimensional
phase space can be defined by the equation

masBd = Va =E
B

gsaddmasq,pd, s10d

wheredmasq,pd is a phase volume element,

dmasq,pd = p
k=1

n
dqk

a ∧ dpk
a

faGsadg2 , s11d

andgsad is a numerical multiplier,

gsad =
1

4np
k=1

n

gksad.

If the domainB of the phase space is defined byqkPR1 and
pkPR1, then gksad=1. If this domain is defined byqk

P fqak;qbkg andpkP fpak;pbkg, then

gksad = F1 +Sqbk − yk

yk − qak
DaGF1 +Spbk − yk8

yk8 − pak
DaG . s12d

It is easy to see that the fractional measure depends on the
fractional powerssqa ,pad.

C. Fractional exterior derivatives

In Eq. s8d, we use the usual exterior derivative

d = o
k=1

2n

dxk
]

]xk
. s13d

Obviously, this derivative can be represented in the form

d = o
k=1

2n

dxk
a ]

]xk
a , s14d

wherexa is defined by Eq.s7d.
Note that the volume element of fractional phase space

can be realized by fractional exterior derivativesf15g,

da = o
k=1

n

dqk
a ]a

f]sqk − ykdga + o
k=1

n

dpk
a ]a

f]spk − yk8dg
a

,

in the following form:

dqa ∧ dpa = S 4

G2s2 − ad
+

1

G2s1 − adD
−1

sqpda−1daq ∧ dap.

D. Fractional Poisson brackets

We can define the fractional generalization of the Poisson
brackets in the form

hA,Bjsad = o
k=1

n S ]aA

s]qkda

]aB

s]pkda −
]aA

s]pkda

]aB

s]qkdaD , s15d

where we use the fractional derivativesf16g. It is knownf16g
that the derivative of a constant need not be zero,

]a1

s]xda =
1

Gs1 − ad
x−a. s16d

This equation leads us to the correlation between coordinates
q and momentap in the form

]ap

s]qda =
pq−a

Gs1 − ad
,

]aq

s]pda =
qp−a

Gs1 − ad
. s17d

It is easy to see thatq andp are not independent variables in
the usual sense. Therefore the fractional analogs15d of the
Poisson brackets is not convenient.
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In the general casesnù2d, the Poisson bracketshqk,qljsad
and hpk,pljsad swith kÞ ld are not equal to zero. If we con-
sidern=2, then we have

hq1,q2jsad = − g2sadq1q2fsq1p1d−a − sq2p2d−ag, s18d

where the coefficientg2sad is defined by the equation

g2sad =
1

G2s1 − ad
−

2

Gs1 − adGs2 − ad
. s19d

Moreover, the Poisson brackets with the unit are not equal to
zero. Using Eq.s16d, we get

h1,qjsad = g2sadq1−apa, s20d

h1,pjsad = − g2sadq−ap1−a. s21d

Therefore the fractional Poisson bracketss15d are not
convenient.

We can use the fractional power Poisson brackets:

hA,Bja = o
k=1

n S ]A

]qk
a

]B

]pk
a −

]A

]pk
a

]B

]qk
aD , s22d

where we use notationss7d. Obviously, the relations

hqk
a,ql

aja = 0, hpk
a,pl

aja = 0, hqk
a,pl

aja = dkl,

are realized for these Poisson brackets. Therefore the frac-
tional Poisson bracketss22d are more convenient.

E. Fractal dimension of space

The interpretation of the fractional phase space is con-
nected with the fractional measure of phase space. The pa-
rametera defines the space with the fractional phase mea-
sures10d ands11d. It is easy to prove that the velocity of the
fractional phase volume change is defined by the equation

dVa

dt
=E

B

Vasq,p,tdgsaddmasq,pd,

where

Va = Hdqt
a

dt
,pt

aJ
a

+ Hqt
a,

dpt
a

dt
J

a

. s23d

Equations23d is proved in Ref.f10g. The form of the omega
function allows us to consider a different class of the systems
that are described by the fractional powers of coordinates
and momenta.

The interpretation of the fractional phase space can be
derived from the fractional measure that is used in the frac-
tional integrals. The interpretation of the fractional phase
space can be connected with fractional dimension. We have
two arguments for this point of view.

sid Let us use the well-known formulas for dimensional
regularizationsf17g:

E rsxddnx =
2pn/2

Gsn/2dE0

`

rsxdxn−1 dx. s24d

Using Eq. s24d, we get that the fractional integral can be
consideredf10g as an integral for the fractional dimension
space

Gsa/2d
2pa/2Gsad E r̃sx,tddax s25d

up to the numerical factorGsa /2d / f2pa/2Gsadg.
sii d Let us consider the well-known definition of the frac-

tal mass dimension. The equations that define the fractal di-
mensions have the passage to the limit. This passage makes
difficult the practical application to the real fractal media.
The other dimensions, which can be easily calculated from
the experimental data, are used in the empirical investiga-
tions. For example, the mass fractional dimensionf18,19g
can be easily measured.

The properties of the fractal media like mass obeys a
power law relation,

Msrd = krDm, s26d

whereM is the mass of fractal medium,r is a box sizesor a
sphere radiusd, and Dm is a mass fractal dimension. The
amount of mass of a medium inside a box of sizer has a
power law relations26d.

The fractal dimension can be calculated by the box count-
ing method which means drawing a box of sizer and count-
ing the mass inside. To calculate the mass fractal dimension,
take the logarithm of both sides of Eq.s26d:

lnsMd = Dm lnsrd + ln k.

The log-log plot ofM andr gives us the slopeDm, the fractal
dimension. When we graph lnsMd as a function of lnsrd, we
get a value of aboutDm which is the fractal dimension of
fractal media.

The power law relations26d can be naturally derived by
using the fractional integral. In order to describe the fractal
media, we suggest to use the space with fractional measure.

Let us consider the line distribution of the mass. If we
consider the mass of the homogeneous distribution
sr=constd in the ball regionW with radiusr, then we have

M1srd =E
−r

+r

rsxddx= 2rE
0

r

dx= 2r1. s27d

In this case,Dm=1. Let us consider line mass distribution in
the fractional space. In that case, a ball of radiusr covers a
mass

Masrd =
2rra

aGsad
.

This equation can be proved by the fractional generalization
of Eq. s27d in the form
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Masrd =
2

GsadE0

r

rsjdja−1 dj = rVasrd =
2rra

aGsad
. s28d

The initial points in the fractional integrals4d are set to zero,
anda=−r, b=r. The fractal dimension of particle system and
fractal media is defined as the exponent ofr in the growth
law for massMsrd or number of particles,

nsrd = Msrd/m= sk/mdrDm. s29d

Here m is a particle mass. Thus we see that the fractal di-
mensionDm of particle systemsin the fractional spaced is a,
i.e., Dm=a. Therefore the space with fractional measures4d
can be considered as a space with fractal dimensionDm=a.

As the result the space with fractional measures4d can be
used to describe the particle systems and medium with non-
integer mass dimension.

III. FRACTIONAL SYSTEMS

A. Equations of motion

In Sec. II we prove that the fractional measures11d de-
pends on the fractional powerssqa ,pad, and Poisson brackets
s22d with fractional powers are more convenient. Therefore
we can consider a different class of mechanical systems that
are described by the fractional powers of coordinates and
momenta. We can consider the fractional power of the coor-
dinates as a convenient way to describe systems in the frac-
tional dimension space.

Let us consider a classical system with the massM. Sup-
pose this system is described by the dimensional coordinates
q̄k and momentap̄k that satisfy the following equations of
motion:

dq̄k

dt̄
=

p̄k

M
,

dq̄k

dt̄
= fksq̄,p̄, t̄d. s30d

Let q0 be the characteristic scale in the configuration space;
p0 be the characteristic momentum,F0 be the characteristic
value of the force, andt0 be the typical time. Let us introduce
the dimensionless variables

qk =
q̄k

q0
, pk =

p̄k

p0
, t =

t̄

t0
, Fk =

fk

F0
.

Here and later we useqk andpk as dimensionless variables.
Using Eq.s30d for dimensional physical variablessq̄, p̄d, we
get the equations for dimensionless variables,

dqk

dt
=

pk

m
,

dqk

dt̄
= AFksq,p,td, s31d

wherem=Mq0/ t0p0 is the dimensionless mass, and

A =
t0F0

p0
. s32d

Using the dimensionless variablessq,p,td, we can consider
the fractional generalization of Eq.s31d in the form

dqk
a

dt
=

pk
a

m
,

dqk
a

dt̄
= AFksqa,pa,td, s33d

where we use the following notations:

qk
a = bsqdsqkda = sgnsqkduqkua, s34d

pk
a = bspdspkda = sgnspkdupkua. s35d

Herek=1, . . . ,n, andbsxd is defined by Eq.s7d.
A system is called a fractional system if the phase space

of the system can be described by the fractional powers of
coordinatess34d and momentas35d.

The fractional phase space can be considered as a phase
space for the fractional systems. This interpretation follows
from the fractional measure that is used in the fractional
integrals.

We can consider the fractional systems in the usual phase
spacesq,pd and in the fractional phase spacesqa ,pad. In the
second case, the equations of motion for the fractional sys-
tems have more simple form. Therefore we use the fractional
phase space. The fractional space is considered as a space
with the fractional measure that is used in the fractional in-
tegrals.

The fractional generalization of the conservative Hamil-
tonian system is described by the equation

dqk
a

dt
=

]H

]pk
a ,

dpk
a

dt
= −

]H

]qk
a , s36d

whereH is a fractional analog of the Hamiltonian. Note that
the functionH is the invariant of the motion. Using the frac-
tional Poisson bracketss22d, we have

dqk
a

dt
= hqk

a,Hja,
dpk

a

dt
= hpk

a,Hja. s37d

Here we use Poisson bracketss22d. These equations describe
the system in the fractional phase spacesqa ,pad. For the
usual phase spacesq,pd, the fractional Hamiltonian systems
are described by the equations

dqk

dt
=

sqkpkd1−a

a2

]H

]pk
,

dpk

dt
= −

sqkpkd1−a

a2

]H

]qk
. s38d

The fractional Hamiltonian systems are non-Hamiltonian
systems in the usual phase spacesq,pd. A classical system
sin the usual phase spaced is called Hamiltonian if the right-
hand sides of the equations

dqk

dt
= gksq,pd,

dpk

dt
= fksq,pd, s39d

satisfy the following Helmholtz conditionsf20g:

]gk

]pl
−

]gl

]pk
= 0,

]gk

]ql
−

]f l

]pk
= 0,

]fk

]ql
−

]f l

]qk
= 0. s40d

It is easy to prove that the Helmholtz conditions are not
satisfied. Therefore the fractional Hamiltonian systems38d is
a non-Hamiltonian system in the usual phase spacesq,pd.
The fractional phase space allows us to write the equations of
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motion for the fractional systems in the simple forms36d.
If we have dqk

a /dt=pk
b /m, then the fractional analog of

the Hamiltonian can be considered in the form

H = o
k,l=1

n
apk

a+b

msa + bd
+ Usqd. s41d

If b=a, then we have the fractional analog of the kinetic
energyT=p2a /2m.

The omega function for the systems39d in the usual phase
spacesq,pd is defined by the equation

V = o
k=1

n S ]gk

]qk
+

]fk

]pk
D . s42d

If the omega function is negativeV,0, then the system is
called a dissipative system. IfVÞ0, then the system is a
generalized dissipative system. For the fractional Hamil-
tonian systemss38d, the omega functions42d is not equal to
zero. Therefore the fractional Hamiltonian systems are the
general dissipative systems in the usual phase space.

It is known that the non-Hamiltonian and dissipative sys-
temssfor example,F=−gpd are not invariant under the Gal-
ilean transformation. In general, the fractional systems are
non-Hamiltonian systems for the usual phase spacesq,pd.
Therefore the Galilean transformations for the equations of
motion are not considered in this paper. The fractional ana-
logs of the Hamiltonian systems can be invariant under the
fractional generalization of the Galilean transformation.

It is not hard to prove that the fractional systemss41d are
connected with the non-Gaussian statistics. Classical dissipa-
tive and non-Hamiltonian systems can have the canonical
Gibbs distribution as a solution of the stationary Liouville
equationsf21g. Using the methodsf21g, it is easy to prove
that some of fractional dissipative systems can have frac-
tional Gibbs distributionsnon-Gaussian statisticd,

rsq,pd = expfF − Hsq,pdg/kT, s43d

as a solution of the fractional Liouville equationsf10g. The
interest in and relevance of fractional kinetic equations is a
natural consequence of the realization of the importance of
non-Gaussian statistics of many dynamical systems. There is
already a substantial literature studying such equations in
one or more space dimensions.

B. Free motion of fractional system

Let us consider the free motion of the fractional system
that is defined by the following equations:

dqa

dt
=

pa

m
,

dpa

dt
= 0. s44d

The solutions of these equations with the conditionsqs0d
=q1 andps0d=p1 have the form

qastd = m−1p1
at + q1

a, pstd = p1. s45d

We can conclude that the free motion of the fractional system
is described by

qstd , st − t1d1/a, s46d

where the parametert1 is defined byq1.
Let us consider the special cases of the parametera: 0.5,

1/3, 0.6.
sid If the parametera is equal to 0.5, then we have the

solution of Eq.s44d in the form

qstd = zsq1,p1,tdsat2 + bt + cd, s47d

where we use the following notations:

zsq1,p1,td = sgnsÎup1ut − mÎuq1ud, s48d

a = up1u/m, b = 2Îuq1p1u/m, c = uq1u. s49d

sii d If the parametera is equal to 1/3, then we have the
solution of Eq.s44d in the form

qstd =
p1

m3t3 +
3p1

2/3q1
1/3

m2 t2 +
3p1

1/3q1
2/3

m
t + q1. s50d

siii d If the parametera is equal to 0.6, then we have the
solution of Eq.s44d in the form

qstd = Sp1
3/5

m
t + q1

3/5D5/3

. s51d

If q1=0, thenqstd, t5/3.
For the usual phase spacesq,pd, the equations of motion

for the fractional system can be represented in the following
form s39d. For the free fractional system, we have

dqk

dt
=

q1−apa

am
,

dpk

dt
= 0. s52d

The omega function for the free fractional system is equal to
the following function:

V =
1 − a

am
q−apa. s53d

In general, this function does not equal to zero and the phase
volume of the usual phase space changes. Using Eq.s45d, we
get

V =
1 − a

a
st + t1d−1, s54d

wheret1=mq1
a /p1

a. If q1=0, then the omega function is pro-
portional to 1/t. Therefore the velocity of elementary phase
volume change for the free motion in the usual phase space
sq,pd is inversely proportional to the time. We suppose that
the initial momentum is not equal to zerop1Þ0.

For the fractional phase spacesqa ,pad, we definef10g the
omega functionVa, in Eq. s23d. This “fractional” omega
function is equal to zero for the free motion of fractional
system. Therefore the fractional phase spacesqa ,pad is more
convenient than usual phase spacesq,pd.

C. Fractional harmonic oscillator

Let us consider the fractional harmonic oscillator, which
is defined in Ref.f10g by the equations
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dqa

dt
=

pa

m
,

dpa

dt
= − mv2qa, s55d

wherev is a dimensionless variable. The solutions of these
equations of motion have the form

qastd = a cossvt + wd, pastd = − mva sinsvt + wd,

s56d

where parametersa,w are defined by

a =Îq1
2a +

p1
2a

v2m2, tgw = −
p1

a

mvq1
a . s57d

If a=0.5, then we have

qstd = sgnfcossvt + w1dga2 cos2svt + wd. s58d

If a=1/3, then we haveqstd=a3 cos3svt+wd. The fractional
harmonic oscillator has the following integral of motion:

H =
p2a

2m
+

mv2q2a

2
= const. s59d

This function can be considered as a fractional analog of
Hamiltonian for Eq.s36d.

For the fractional harmonic oscillator the functionVa is
equal to zero in the fractional phase spacesqa ,pad. Therefore
this system is a conservative Hamiltonian nondissipative sys-
tem in the fractional space.If we use the usual phase space
to describe the fractional harmonic oscillator, then this sys-
tem is conservative non-Hamiltonian dissipative system.
Note that the conservative non-Hamiltonian systems are con-
sidered in Ref.f22g.

In the usual phase spacesq,pd the equations of motion for
fractional oscillator have the form

dq

dt
=

1

am
q1−apa,

dp

dt
= −

mv2

a
qap1−a. s60d

The omega function for the usual phase spacesq,pd is de-
fined by Eq.s42d in the form

V =
1 − a

am
q−ap−asp2a − m2v2q2ad. s61d

The elementary phase volume of the usual phase space
changes. The velocity of this change is equal to the omega
function. Substituting the solutions56d into Eq. s61d, we
have

V =
1 − a

a
2v cot 2svt + wd, s62d

where we use sin2 b−cos2 b=−cos 2b and cotb
=cosb /sinb. Therefore the fractional harmonic oscillator is
a general dissipative system in the usual phase spacesq,pd.

For the fractional phase spacesqa ,pad, the fractional har-
monic oscillator is conservative nondissipative Hamiltonian
system. Therefore the fractional phase spacesqa ,pad is more
convenient than usual phase spacesq,pd.

The question arises: What are the fundamentalssdifferent
from Hamilton principled, which can lead to the system of

dynamic equationss60d? For the fractal media the harmonic
oscillator is defined by Eq.s55d. For the usual phase space
sq,pd, this equation has forms60d. Therefore the systems60d
can be considered as a system,

dq

dt
=

p

M
,

dp

dt
= − Msv/ad2q, s63d

where the dimensionless massMsq,pd=masp/qd1−a satisfies
the scaling relation

Msl1q,l2pd = sl2/l1d1−aMsq,pd.

This property can be formulated in the following form. If we
consider the scale transformation of the characteristic values
in the form

q0 → q0/l1, p0 → p0/l2,

then we have transformation of the mass

M → sl2/l1d1−aM .

In the general case, this scaling law can be described by the
renormalization group approachf23g.

Note that the systems63d is a non-Hamiltonian system.
We consider the fractional phase space forms55d of Eq. s60d
as more fundamental. The fractional harmonic oscillator is
an oscillator in the fractional phase space that can be consid-
ered as a fractal medium. Therefore the fractional oscillator
can be interpreted as an elementary excitation of some fractal
medium with noninteger mass dimension.

D. Curved phase space

The fractional system with the fractional analogs41d of
the Hamiltonian can be considered as a nonlinear system
with

Hsqa,pad = o
k=1

n
1

2
gklsq,pdpkpl + Usqd. s64d

Note that this fractional Hamiltonians64d defines a nonlinear
one-dimensional sigma modelf24,25g in the curved phase
space with metricgklsq,pd=m−1pk

a+b−2dkl. This means that
we use the curved phase space. Note that this fractional
Hamiltonian is used in equations of motions38d that define
the non-Hamiltonian flow in the usual phase space.

The curved phase space is used in the Tuckerman ap-
proach to the non-Hamiltonian statistical mechanicsf26–34g.
In their approach the suggested invariant phase space mea-
sure of non-Hamiltonian systems is connected with the met-
ric of the curved phase space. This metric defines the gener-
alization of the Poisson brackets. The generalizedsnon-
Hamiltoniand bracket is suggested in Refs.f31,32g. For these
brackets, the Jacobi relations will not be satisfied. This re-
quires the application of non-Lie algebrassin which the Ja-
cobi identity does not holdd and analytic quasigroupsswhich
are nonassociative generalizations of groupsd. In the paper
f35g, we show that the analogues of Lie algebras and groups
for non-Hamiltonian systems are Valya algebrassanticom-
mutative algebras whose commutants are Lie subalgebrasd
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and analytic commutant-associative loopsfwhose commu-
tants are associative subloopssgroupsdg. Unfortunately, non-
Lie algebras and its representations have not been thoroughly
studied. Nevertheless, the Riemannian treatment of the phase
space is very interesting. This approach allows us to consider
the connection between the fractal dimensional phase space
and non-Lie algebras of the vector fields in the space.

IV. FRACTIONAL AVERAGE VALUES
AND REDUCED DISTRIBUTIONS

A. Fractional average values for configuration space

Let us derive the fractional generalization of the equation
that defines the average value of the classical observable
Asq,pd.

The usual average value for the configuration space

kAl1 =E
−`

`

Asxdrsxddx s65d

can be written in the form

kAl1 =E
−`

y

Asxdrsxddx+E
y

`

Asxdrsxddx. s66d

Using the notations

sI+
afdsyd =

1

GsadE−`

y fsxddx

sy − xd1−a ,

sI−
afdsyd =

1

GsadEy

` fsxddx

sx − yd1−a ,

average values66d can be rewritten in the form

kAl1 = sI+
1Ardsyd + sI−

1Ardsyd.

The fractional generalization of this equation is defined by

kAla = sI+
aArdsyd + sI−

aArdsyd. s67d

We can rewrite Eq.s67d in the form

kAla =
1

2
E

−`

`

fsArdsy − xd + sArdsy + xdgdmasxd, s68d

where we use

dmasxd =
uxua−1 dx

Gsad
=

dxa

aGsad
, s69d

andxa is defined by Eq.s7d.

B. Fractional average values for phase space

Let us introduce some notations to consider the fractional
average value for phase space.

sid Let us define the tilde operatorsTxk
and Tfkg. The

operatorTxk
is defined by

Txk
fs. . .,xk, . . . d =

1

2
„fs. . .,xk8 − xk, . . . d + fs. . .,xk8 + xk, . . . d….

This operator allows us to rewrite the functions

1

4
fAsq8 − q,p8 − p,tdrsq8 − q,p8 − p,td

+ Asq8 + q,p8 − p,tdrsq8 + q,p8 − p,td

+ Asq8 − q,p8 + p,tdrsq8 − q,p8 + p,td

+ Asq8 + q,p8 + p,tdrsq8 + q,p8 + p,tdg

in the simple form

TqTp„Asq,p,tdrsq,p,td….

Let us considerk particle that is described by generalized
coordinatesqks and generalized momentapks, where s
=1, . . . ,m. The operatorTfkg is defined by the relation
T fkg=Tqk1

Tpk1
¯Tqkm

Tpkm
. For the n-particle system phase

space, we use the operatorT f1, . . . ,ng=Tf1g¯T fng.
sii d Let us define the integral operatorsÎ xk

a and Îafkg. The

operatorÎ xk

a is defined by the equation

Î xk

a fsxkd =E
−`

+`

fsxkddmasxkd. s70d

In this case, fractional integrals68d, which defines the aver-
age value, can be rewritten in the form

kAla = Î x
aTxAsxdrsxd.

Let us define the phase space integral operatorÎafkg for k

particle by Îafkg= Îqk1

a Î pk1

a
¯ Îqkm

a Î pkm

a , i.e., we use

Îafkg fsqk,pkd =E fsqk,pkddmasqk,pkd. s71d

Here dmasqk,pkd is an elementary 2m-dimensional phase
volume that is defined by the equation

dmasqk,pkd = faGsadg−2m dqk1
a ∧ dpk1

a ∧ ¯ ∧ dqkm
a ∧ dpkm

a .

For the n-particle system phase space, we use the integral

operatorÎaf1, . . . ,ng= Îaf1g¯ Îafng.
siii d Let us define the fractional analog of the average

valuesA for the phase space forn-particle system. Using the
suggested notations, we can define the fractional average
value by the relation

kAla = Îaf1, . . . ,ngT f1, . . . ,ngArn. s72d

In the simple casesn=m=1d, the fractional average value is
defined by the equation

kAla =E
−`

` E
−`

`

dmasq,pdTqTp Asq,pdrsq,pd. s73d

Note that the fractional normalization conditionf10g is a
special case of this definition of the average value

k1la = 1.

C. Reduced distribution functions

In order to derive a fractional analog of the Bogoliubov
hierarchy equations we must define the reduced distributions.
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Let us consider a classical system with fixed numbern of
identical particles. Supposek particle is described by the
dimensionlessgeneralized coordinatesqks and generalized
momentapks, wheres=1, . . . ,m. We use the following nota-
tions qk=sqk1, . . . ,qkmd andpk=spk1, . . . ,pkmd.

The state of this system can be described bydimension-
less n-particle distribution function rn in the
2mn-dimensional phase space,

rnsq,p,td = rsq1,p1, . . . ,qn,pn,td.

We assume that distribution function is invariant under
the permutations of identical particlesf36g:

rs. . .,qk,pk, . . . ,ql,pl, . . . ,td = rs. . .,ql,pl, . . . ,qk,pk, . . . ,td.

In this case, the average values for the classical observables
can be simplified. We use the tilde distribution functions

r̃nsq,p,td = T f1, . . . ,ngrnsq,p,td, s74d

and the functionr̃1 that is defined by the equation

r̃1sq,p,td = r̃sq1,p1,td = Îaf2, . . . ,ngr̃nsq,p,td. s75d

This function is called one-particle reduced distribution func-
tion. The function is defined for the 2m-dimensional phase
space. Obviously, that one-particle distribution function sat-
isfies the normalization conditionf10g

Îaf1gr̃1sq,p,td = 1. s76d

Two-particle reduced distribution functionr̃2 is defined
by the fractional integration of then-particle distribution
function over allqk andpk, exceptk=1,2:

r̃2sq,p,td = r̃sq1,p1,q2,p2,td = Îaf3, . . . ,ngr̃nsq,p,td.

s77d

V. FRACTIONAL LIOUVILLE AND BOGOLIUBOV
EQUATIONS

A. Fractional Liouville equation

The fractional generalization of the Liouville equation is
derived in Ref.f10g. Let us consider the Hamilton equations
for n-particle system in the form

dqks
a

dt
= Gs

ksqa,pad,
dpks

a

dt
= AFs

ksqa,pa,td. s78d

The evolution ofn-particle distribution functionrn is de-
scribed by the Liouville equation. The fractional Liouville
equationf10g for n-particle distribution function has the form

dr̃n

dt
+ Var̃n = 0. s79d

This equation can be derivedf10g from the fractional nor-
malization condition

Îaf1, . . . ,ngr̃nsq,p,td = 1. s80d

In the Liouville equationd/dt is a total time derivative,

d

dt
=

]

]t
+ o

k,s=1

n,m
dqks

dt

]

]qks
+ o

k,s=1

n,m
dpks

dt

]

]pks
.

Using Eq.s78d, this derivative can be written for the frac-
tional powers in the form

d

dt
=

]

]t
+ o

k,s=1

n,m

Gs
k ]

]qks
a + A o

k,s=1

n,m

Fs
k ]

]pks
a . s81d

The a-omega function is defined by the equation

Va = o
k,s=1

n,m

shGs
k,pks

a ja + Ahqks
a ,Fs

kjad. s82d

Here we use the following notations for the fractional Pois-
son brackets:

hA,Bja = o
k,s=1

n,m S ]A

]qks
a

]B

]pks
a −

]A

]pks
a

]B

]qks
a D . s83d

Using Eqs.s79d, s82d, ands81d, we get the Liouville equa-
tion in the form

]r̃n

]t
= Lnr̃n, s84d

whereLn is Liouville operator that is defined by the equation

Lnr̃n = − o
k,s=1

n,m S ]sGs
kr̃nd

]qks
a + A

]sFs
kr̃nd

]pks
a D . s85d

B. First fractional Bogoliubov equation

The Bogoliubov equationsf11–14g are equations for the
reduced distribution functions. These equations can be de-
rived from the Liouville equation. Let us derive the first frac-
tional Bogoliubov equations93d from the fractional Liouville
equations84d.

In order to derive the equation for the functionr̃1 we
differentiate Eq.s75d, which defines one-particle reduced
distribution:

]r̃1

]t
=

]

]t
Îaf2, . . . ,ngr̃n = Îaf2, . . . ,ng

]r̃n

]t
.

Using the Liouville equations84d for n-particle distribution
function r̃n, we have

]r̃1

]t
= Îaf2, . . . ,ngLnr̃nsq,p,td. s86d

Substituting Eq.s85d in Eq. s86d, we get

]r̃1

]t
= − Îaf2, . . . ,ng o

k,s=1

n,m S ]sGs
kr̃nd

]qks
a + A

]sFs
kr̃nd

]pks
a D . s87d

Let us consider in Eq.s87d the integration overqks andpks
for the k-particle term. Since the coordinates and momenta
are independent variables, we can derive
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Îafqksg
]

]qks
a sGs

kr̃nd =
1

aGsad
sGs

kr̃nd−`
+` = 0. s88d

Here we use the condition

lim
qks→±`

r̃n = 0, s89d

which follows from the normalization condition. If limits89d
is not equal to zero, then the integration over phase space is
equal to infinity. Similarly, we have

ÎafpksgS ]

]pks
a sFs

kr̃ndD =
1

aGsad
sFs

kr̃nd−`
+` = 0.

Then all terms in Eq.s87d with k=2, . . . ,n are equal to zero.
We have only term fork=1. Therefore Eq.s87d has the form

]r̃1

]t
= − o

s

m

Îaf2, . . . ,ngS ]sGs
1r̃nd

]q1s
a + A

]sFs
1r̃nd

]p1s
a D . s90d

Since the variableq1 is an independent ofq2, . . .qn and
p2, . . .pn, the first term in Eq.s90d can be written in the form

o
s=1

m

Îaf2, . . . ,ng
]sGs

1r̃nd
]q1s

a = o
s=1

m
]

]q1s
a Gs

1Îaf2, . . . ,ngr̃n

= o
s=1

m
]sGs

1r̃1d
]q1s

a .

The forceFs
1 acts on the first particle. This force is a sum

of the internal forcesFs
1k=Fssq1,p1,qk,pk,td, and the exter-

nal forceFs
1e=Fs

esq1,p1,td. In the case of binary interactions,
we have

Fs
1 = Fs

1e + o
k=2

n

Fs
1k. s91d

Using Eq.s91d, the second term in Eq.s90d can be rewrit-
ten in the form

Îaf2, . . . ,ngS ]sFs
1r̃nd

]p1s
a D

= Îaf2, . . . ,ngS ]sFs
1er̃nd

]p1s
a + o

k=2

n
]sFs

1kr̃nd
]p1s

a D
=

]sFs
1er̃1d

]p1s
a + o

k=2

n
]

]p1s
a Îaf2, . . . ,ngsFs

1kr̃nd. s92d

Since then-particle distribution functionr̃n is a symmetric
function for the identical particles, we have that allsn−1d
terms of sums92d are identical. Therefore the sum can be
replaced by one term with the multipliersn−1d:

o
k=2

n

Îaf2, . . . ,ng
]

]p1s
a sFs

1kr̃nd = sn − 1dÎaf2, . . . ,ng
]

]p1s
a sFs

12r̃nd.

Using Îaf2, . . . ,ng= Îaf2gÎaf3, . . . ,ng, we have

Îaf2g
]

]p1s
a sFs

12Îaf3, . . . ,ngr̃nd =
]

]p1s
a Îaf2gsFs

12r̃2d.

Here we use definitions77d of two-particle distribution func-
tion. Sincep1 is independent ofq2, p2, we can change the
order of the integrations and the differentiations:

Îaf2g
]

]p1s
a sFs

12r̃2d =
]

]p1s
a Îaf2gFs

12r̃2.

Finally, we obtain the equation for one-particle reduced
distribution function,

]r̃1

]t
+ o

s=1

m
]sGs

1r̃1d
]q1s

a + Ao
s=1

m
]sFs

1er̃1d
]p1s

a = sn − 1dAIsr̃2d.

s93d

Here Isr̃2d is a term with two-particle reduced distribution
function,

Isr̃2d = − o
s=1

m
]

]p1s
a Îaf2gFs

12r̃2. s94d

Equations93d is called afirst fractional Bogoliubov equation
sfirst equation of Bogoliubov chaind.

Let us consider the physical meaning of the termIsr̃2d.
The term Isr̃2ddmasq ,pd is a velocity of particle number
change in 4m-dimensional elementary phase volume
dmasq1,p2,q2,p2d. This change is caused by the interactions
between particles. Ifa=1, then we have the first Bogoliubov
equation for non-Hamiltonian systems.

C. Second fractional Bogoliubov equation

The fractional Liouville equation allows us to derive
equation for two-particle reduced distribution functionr̃2 in
the form

]r̃2

]t
= o

k=1

2

Lkr̃2 + L12r̃2 + csndAIsr̃3d, s95d

wherecsnd=sn−1dsn−2d /2, andLk is one-particle Liouville
operator,

Lkr̃2 = − o
s=1

m
]sGs

kr̃2d
]qks

a − Ao
s=1

m
]sFs

ker̃2d
]pks

a ,

andL12 is two-particle Liouville operator,

L12r̃2 = Ao
s=1

m
]

]p1s
a sFs

12r̃2d + Ao
s

m
]

]p2s
a sFs

21r̃2d,

and Isr̃3d is a term with the three-particle reduced
distribution,

Isr̃3d = o
s=1

m

Îaf3gS ]sFs
13r̃3d

]p1s
a +

]sFs
23r̃3d

]p2s
a D . s96d

The derivation of Eq.s95d is the analogous to the derivation
of Eq. s93d.
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It is easy to see that Eqs.s93d ands95d are not closed. The
system of equations for the reduced distribution functions are
called the Bogoliubov hierarchy equations.

VI. FRACTIONAL VLASOV EQUATION
AND DEBYE RADIUS

A. Fractional Vlasov equation

In this section, we derive the fractional analog of the Vla-
sov equation from the first fractional Bogoliubov equation.
Let us consider the particles as statistical independent sys-
tems. In this case, we have

r̃sq1,p1,q2,p2,td = r̃sq1,p1,tdr̃sq2,p2,td. s97d

Substituting Eq.s97d in Eq. s94d, we get

Isr̃2d = − o
s

m
]

]p1s
a r̃1f1gÎaf2gFs

12r̃1f2g.

Here we use the notationrfkg for the distribution function
rsqk,pk,td. As the result we have the effective forces,

Fs
ef fsq1,p1,td = Îaf2gFs

12r̃1f2g.

In this case, we can rewrite the terms94d in the form

Isr̃2d = −
]

]p1s
a sr̃1Fs

1ef fd. s98d

Substituting Eq.s98d in Eq. s93d, we get

]r̃1

]t
+ o

s=1

m
]sGs

1r̃1d
]q1s

a + Ao
s=1

m
]

]p1s
a fsFs

1e + bFs
1ef fdr̃1g = 0,

s99d

whereb=n−1. This equation is a closed equation for one-
particle distribution function with the external forceF1e and
the effective forceF1ef f. Equations99d can be called a frac-
tional Vlasov equationf37g.

The fractional Liouville, Bogoliubov, and Vlasov equa-
tion are a better approximation than its classical analogs for
the systems with the fractional phase spacessthe fractal di-
mensional spacesd. For example, the systems that live on
some fractalssspaces with the fractal dimensionsd can be
described by the suggested fractional equations.

B. Debye radius

In this section, we consider the Debye radius for the frac-
tional systems that are defined by the equations

dqks
a

dt
=

pks
b

m
,

dpks
a

dt
= AFs

ksq,pd, s100d

where we use the dimensionless variablesqk,pk,Fk,t. Let r0
=q0 be the radius of the interaction. Herem=Mr0/ t0p0 is a
dimensionless mass, whereM is a particle mass. Usingm
=1, we get

t0 =
Mq0

p0
, A =

t0F0

p0
=

Mq0

p0
2 . s101d

Let us use the conditionp0
2/M =kT0 for the characteristic

momentump0. Note that the conditionp2/M =kT can be re-
alized for non-Hamiltonian and dissipative systemsf21g.

The first fractional Bogoliubov equations93d for the di-
mensionless one-particle distributionr̃1 has the following di-
mensionless formf38g:

]r̃1

]t
+ o

s=1

3
]sp1s

b r̃1d
]q1s

a + Ao
s=1

3
]sFs

1r̃1d
]p1s

a = ABIsr̃2d. s102d

The dimensionless first Bogoliubov equations102d has two
characteristic parameters,

A =
t0F0

p0
=

Mr0F0

p0
2 =

r0F0

kT0
, B = n0r0

3a. s103d

Let us consider the coefficientB. It is known f18,19g that
fractal particle system and fractal media are described by the
power law relations29d:

nsrd = n0r
D, s104d

where D,3 and n0 is the D-dimensional concentration of
theD-dimensional distribution of particles. The dimensionD
of fractal system is connected with order of the fractional
integralsa by D=3a. The concentrationn0 can be defined
by theD-dimensional mass densityk: n0=k/M which is used
in Eqs.s26d ands29d. To calculate the mass fractal dimension
D and concentrationn0, we can take the logarithm of both
sides of Eq.s104d. When we graph lnsnd as a function of
lnsrd, we have

lnsnd = D lnsrd + lnsn0d,

and we get a value of the fractal dimensionD of fractal
media and parametern0. Therefore these values can be mea-
sured for homogeneous fractal media.

Let us consider the fractional systems with the force

Fkl =
e2

4p«0r0
2

1

urk − r lu2d , s105d

where rk and r l are dimensional values of coordinates. Ifd
=1, then we have the usual electrostatic interaction. In this
case, the Gauss theorem for the fractional space is not satis-
fied. If 2d=3a−1, then the Gauss theorem for the fractional
space is satisfied. The radiusr0 and the forceF0 are con-
nected by the equation

F0 =
e2

4p«0

1

r0
2 . s106d

Using the relationAB,1, we have the characteristic ra-
dius of the interaction in the fractal media,

r0 = rD =
3a−1Î«0kT0

e2n0
, s107d
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which can be called a fractional Debye radius. If the particle
systems or media have the integer mass dimensionD=3,
then a=1, and we get the usual equation for the Debye ra-
dius f39g. The fractional radius characterizes the scaleq0
=r0 of the fractal media or fractal system with noninteger
mass dimension.

VII. CONCLUSION

In this paper, we consider the fractional generalizations of
the phase volume, the phase volume element, and the Pois-
son brackets. These generalizations lead us to the fractional
analog of the phase space. The space can be considered as a
fractal dimensional space. We consider systems on the frac-
tional phase space and the fractional analogs of the Hamilton
equations. The physical interpretation of the fractional phase
space is discussed. The fractional generalization of the aver-
age values is derived.

It is known that the fractional derivative of a constant
need not be zero. This relation leads to the correlation be-
tween coordinatesq and momentump. Thereforeq andp are
not independent variables in the usual sense. As the result,
the generalization of the Poisson brackets with fractional de-
rivatives s15d is not canonical. In order to derive equations
with fractional derivatives we must have a generalization of
Darboux theoremf40g for symplectic form with fractional
exterior derivatives. However, this generalization is an open
question at this moment. In order to define Poisson brackets
with the usual relations for the coordinates and the momenta
we can use Poisson bracketss22d with the fractional power
of coordinates and momenta.

Note that the dissipative and non-Hamiltonian systems
can have stationary states of the Hamiltonian systemsf41g.
Classical dissipative and non-Hamiltonian systems can have

the canonical Gibbs distribution as a solution of the station-
ary Liouville equations for this dissipative systemf21g. Us-
ing the methodsf21g, it is easy to prove that some fractional
dissipative systems can have fractional analog of the Gibbs
distributionsnon-Gaussian statisticd as a solution of the frac-
tional Liouville equations. Using the methodsf21g, it is easy
to find the stationary solutions of the fractional Bogoliubov
equations for the fractional systems.

Note that the quantization of the fractional systems is a
quantization of non-Hamiltonian dissipative systems. Using
the method, which is suggested in Refs.f42–44g, we can
realize the Weyl quantization for the fractional systems. The
suggested fractional Hamilton and Liouville equations allow
us to derive the fractional generalization for the quantum
systems by methods suggested in Refs.f42–44g.

In this paper the fractional analogs of the Bogoliubov hi-
erarchy equations are derived. In order to derive this analog
we use the fractional Liouville equationf10g, we define the
fractional average values and the fractional reduced distribu-
tion functions. The fractional analog of the Vlasov equation
and the Debye radius are considered.

The fractional Bogoliubov hierarchy equation can be used
to derive the Enskog transport equation. The fractional ana-
log of the hydrodynamics equations can be derived from the
first fractional Bogoliubov equation. These equations will be
considered in the next paper.

It is known that the Fokker-Planck equation can be
derived from the Bogoliubov hierarchy equationsf8g. The
fractional Fokker-Planck equation can be derived from the
fractional Bogoliubov equation. However, this fractional
Fokker-Planck equation can be differed from the equation
known in the literaturef5–7g.

The quantum generalization of the suggested fractional
Bogoliubov equation can be considered by the methods that
are suggested in Refs.f42–44g.
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