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Fractional systems and fractional Bogoliubov hierarchy equations
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We consider the fractional generalizations of the phase volume, volume element, and Poisson brackets.
These generalizations lead us to the fractional analog of the phase space. We consider systems on this fractional
phase space and fractional analogs of the Hamilton equations. The fractional generalization of the average
value is suggested. The fractional analogs of the Bogoliubov hierarchy equations are derived from the frac-
tional Liouville equation. We define the fractional reduced distribution functions. The fractional analogs of the
Vlasov equation and the Debye radius are considered.
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[. INTRODUCTION value[11-14. In Ref.[10], the fractional Liouville equation

is derived from the fractional normalization condition. In this

many applications in recent studies of scaling phenomen aper we defir)e fche .fractional analog .Of the average value

[1-6]. In Ref. [7], coordinate fractional derivatives in the nq reduced d|§tr|but|ons. Then we denve. the.fract|onal_ Bo-

Fokkér-PIanck eq’uation were used. It is known that Fokker—gOIIUbOV equ_apons from thg fractional Liouville equatlo'n

Planck equation can be derived frdm the Liouville equationand the Qeflnltlon of the fractional average value. We derive
e o . 2=~ "the fractional analog of the Vlasov equation and the Debye

[8]. The Liouville equation is derived from the normalization radius

gozg'tti'g: dan/%tt:e ;—|ne]1mdllto/n dte: q:aznorﬁ)@]\.mlan r;[g\(jeHc;ar:Tlnlt?hne . In Ref. [10],.the Riemann—Lio_uinIe Qefinition of the frac-_

- Ak P! M, B K. p) > only tional integration and differentiation is used. Therefore in

time derivatives. The us_ual F‘Ofma"zﬁ“on condition Iegds Qs paper we use this definition of fractional integration and

the usualnonfractional Liouville equation. If we would like differentiation

to derive the fractional Liouville equation then we must use :

fractional lizati dit In ROl the f In Sec. Il, we define the fractional phase space volume.
a fractional normaization condition. in 6f10], 1€ rac~ g fractional phase volume element for the fractional phase
tional Liouville equation was derived from fractional nor-

N - space is considered. We define the fractional analog of the
malization condition.

T twral " ises: What Id be the phvsi Poisson bracket. In Sec. lll, we consider the fractional sys-
€ natural question arises: at could be the p ys'?aﬂems. We discuss the free motion of the fractional systems,
meaning of the fractional normalization condition? This

. . . ; the fractional harmonic oscillator and fractional analog of the
physical meaning can be the following: the system is to b g

found somewhere in the fractional oh The fr amiltonian systems. In Sec. 1V, the fractional average val-
ound somewnere € Tractional phase space. 1h€ raGiaq ang some notations are considered. We define the re-
tional normalization condition can be considered as a nory

lizati dition for the distribution function i ¢ uced one-particle and two-particle distribution functions. In
malization condition for the distribution function In a frac- og . V, the fractional Liouville equation forparticle system

tional phase space. In order to use this interpretation we MUSL \written. We derive the first fractional Bogoliubov equation

defir!e a fractional pha;e space. The f!rst interpretati'on of Fhﬁ*om the fractional average value and the fractional Liouville
fractional phase space is connected with fractional d'mens'ogquation. The second fractional Bogoliubov equation is con-

space. The fractional dimension interpretation follows fromsidered. In Sec. VI, we derive the fractional analog of the

the formulas for d|m_enS|onaI regul_ar|zat|ons. This INterpretay 2oy equation and the Debye radius for fractional systems.
tion was suggested in R¢fL0]. In this paper we con5|derthe. Finally, a short conclusion is given in Sec. VII.

second interpretation of the fractional phase space. This in-
terpretation follows from the fractional measure of phase
space[10] that is used in the fractional integrals. The frac- Il. FRACTIONAL PHASE VOLUME
tional phase space is considered as a phase space that is AND POISSON BRACKETS
described by the fractional powers of coordinates and mo- A. Fractional phase volume for configuration space
menta(qy, pg). In thi he fractional normalization con- : :
e ta(dic, pic) . t. s_case,t c actional no a ation co Let us consider the phase volume for the region such that
dition for the distribution function and the fractional average . . :
; o x e[a;b]. The usual phase volume is defined by
values are considered as a condition and values for the frac-
tional space. In general, these systems are non-Hamiltonian b y b
Vlzf dx:J dx+f dx.
a a y

Derivatives and integrals of fractional order have found

dissipative systems for the usual phase sgacp). (1)
It is known that Bogoliubov equations can be derived

from the Liouville equation and the definition of the averageThe fractional integrations are defingtb] by

o1 = 1 f Y dx
+l = I-a’
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1 (° L0
Ih 1= f —. P
"), (x-y)t 9(@) = 1L o).
Using these notations, we get Eq) in the form If the domainB of the phase space is defined dgye R* and
Vo=1t14+1t 1 2) pce RY, then g(a@)=1. If this domain is defined by,
=121+12 1.

€ [dak: Aol @and py € [Pak; Poil, then
The fractional generalization of this phase volume can be

defined by (@) = {1+(—Qbk'yk> M“(—pi"‘_yk) } (12)
V,=18,1 4181, 3) Yk~ Qak Yk ~ Pak
It is easy to see that the fractional measure depends on the

The fractional phase volume integi&) can be written in . o o
the form fractional powergq”, p?).
V,= 1;(- )\) ga‘l dé, (4) C. Fractional exterior derivatives
o
In Eqg. (8), we use the usual exterior derivative
where\ is defined by on
J
y-a d=2> dx—. (13)
N=—. k=1 Ok
b-y

Obviously, this derivative can be represented in the form
In order to have the symmetric limits of the phase volume

integral we can use the following equation:

d= d 14
Vo= dua(X), 5
=(b-y) wherex“ is defined by Eq(7).
where Note that the volume element of fractional phase space
. can be realized by fractional exterior derivatiyas$],
IX*tdx  dx®
dug(X) = = : (6) ! o
“ T T @ 2 o e+ S AR
Here we use the following notation for fractional power of G Vi k=t [ﬁ(pk %o
coordinates: in the following form:
X = B (X)* = sgrix)[x|*, (7

-1
dg® Odp :( ) (qp)*'d*qOd*p.

4 1
+
where B8(x)=[sgn(x)]*"L. The function sgfx) is equal to +1 I’2-a) TI'(1-a
for x=0, and this function is equal -1 for<O0.
B. Fractional phase volume for phase space D. Fractional Poisson brackets
Using Eq.(5), we have the phase volume for the two-

: : . We can define the fractional generalization of the Poisson
dimensional phase space in the form

brackets in the form

1+2\% 1+)\01 (Ap-y) PoY) dg®d
=55 2 e f [qr( >§J2’ © {A.B} é(m o aaB) (19
al (a 'y Df(a) = « a a al’
Sy ey T\ @) ()T (3P (9
where . L .
where we use the fractional derivatid$]. It is known[16]
dg* Odp*= a2|qp|“'1 dgOdp. 9) that the derivative of a constant need not be zero,
The fractional measure for the regi8mof 2n-dimensional 91 1 ~
phase space can be defined by the equation (" “Ta _a)X *. (16)
wo(B) =V, = f g(a)du,(g,p) (100  This equation leads us to the correlation between coordinates
g and momentao in the form
wheredw,(q,p) is a phase volume element, ap _ pg” aq _ qp“ (17
" e Do (7 T1-a) (@) T(d-a)
_ G L apg
dua(,p) = kHl [al(a)?" (11 It is easy to see tha andp are not independent variables in
B the usual sense. Therefore the fractional anald) of the
andg(a) is a numerical multiplier, Poisson brackets is not convenient.
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In the general cas@g=2), the Poisson brackefsi, q}(,) . vz (e -

and {py, pi}(» (with k#1) are not equal to zero. If we con- fp(x)d X= T2 ), p(X)X™ dx. (24)

sidern=2, then we have

_ o w Using Eq.(24), we get that the fractional integral can be
{01, Ao} () = = 72 @) Qa0 (AaP) ™~ (GoP) ], (18) considered 10] as an integral for the fractional dimension

where the coefficient,(«) is defined by the equation space
I'(al2) -
1 2 a
= - ) 19 | p(x,1)dx (25)
YA o ) Tl 2-a) (19 2m*T(a)
Moreover, the Poisson brackets with the unit are not equal t§P to the numerical factdr(a/2)/[27¥?T (a)].
zero. Using Eq(16), we get (i) Let us consider the well-known definition of the frac-
tal mass dimension. The equations that define the fractal di-
1.ahw= Yo @) gt pY, (20) mensions have the passage to the limit. This passage makes

difficult the practical application to the real fractal media.
(1,0} = - yol@)qpta (21) The other_dimensions, which can_be easily c;a_llculated fr_om
Pl va)q pr the experimental data, are used in the empirical investiga-
tions. For example, the mass fractional dimensi®8,19
can be easily measured.
The properties of the fractal media like mass obeys a
power law relation,

Therefore the fractional Poisson brackets5) are not
convenient.
We can use the fractional power Poisson brackets:

”(ﬂA 7 %E)
o ape - dpg g )’

{AB},=>

k=1

(22 M(r) = krPm, (26)

whereM is the mass of fractal medium,is a box sizelor a

where we use notatior(§). Obviously, the relations sphere radius and D,, is a mass fractal dimension. The
" . o " o amount of mass of a medium inside a box of sizhas a
{a:a1e=0, {p,pta=0, {d.pta= o power law relation(26).

The fractal dimension can be calculated by the box count-
g method which means drawing a box of sizend count-

ing the mass inside. To calculate the mass fractal dimension,
take the logarithm of both sides of E(®6):

are realized for these Poisson brackets. Therefore the frafﬁ
tional Poisson bracket®2) are more convenient.

E. Fractal dimension of space

The interpretation of the fractional phase space is con- In(M) =Dpy In(r) + Ink.

nected with the fractional measure of phase space. The pa- .
rametera defines the space with the fractional phase mea?;.he Iog_—log \F/’\Il?]t ofM andr gr:vﬁ us thef SIO'?.@’“’ tple fractal
sure(10) and(11). It is easy to prove that the velocity of the 2IMeNSIon. When we grap (k1) as a function of Ifr), we

fractional phase volume change is defined by the equation get a value_ of abouDy,, which is the fractal dimension of
fractal media.

dv, The power law relatiori26) can be naturally derived by
ot :J Q,(9,p,H)g(@)du(a,p), using the fractional integral. In order to describe the fractal
B media, we suggest to use the space with fractional measure.
Let us consider the line distribution of the mass. If we
consider the mass of the homogeneous distribution

da® o (p=consj in the ball regionW with radiusr, then we have
qt o o dp[
Q,= Pef )0 :

where

dt

p (23

a

+r r
Ml(r)=f p(x)dx=2pf dx=2rt. (27

Equation(23) is proved in Ref[10]. The form of the omega -r 0
function allows us to consider a different class of the systems
that are described by the fractional powers of coordinate$1 this caseD,=1. Let us consider line mass distribution in
and momenta. the fractional space. In that case, a ball of radit®vers a

The interpretation of the fractional phase space can b&ass
derived from the fractional measure that is used in the frac-
tional integrals. The interpretation of the fractional phase M. () = 2pr”
space can be connected with fractional dimension. We have “ al'(a)
two arguments for this point of view.

(i) Let us use the well-known formulas for dimensional This equation can be proved by the fractional generalization
regularizationg17]: of Eq. (27) in the form
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o

2pr
al(a)’

2 r
M,(r) = @fo p(HETdE=pV,(r) = (28)

The initial points in the fractional integréd) are set to zero,

anda=-r, b=r. The fractal dimension of particle system and

fractal media is defined as the exponentrah the growth
law for massM(r) or number of particles,

n(r) = M(r)/m= (k/m)rPm. (29)

Here m is a particle mass. Thus we see that the fractal di-

mensionD,, of particle systeniin the fractional spagds «,

i.e., Dnh=a. Therefore the space with fractional meas(#e

can be considered as a space with fractal dimenBign «.
As the result the space with fractional measihecan be

PHYSICAL REVIEW E 71, 011102(2005

doc _ pi  do
—=—, — =AR(g%p*1), 33
it m gt K%, p%t) (33
where we use the following notations:
Ok = Ba) (G = sgrid|ay (34
Pk = BP)(PY* = sgr(pi P - (39

Herek=1,... n, andB(x) is defined by Eq(7).
A system is called a fractional system if the phase space
of the system can be described by the fractional powers of
coordinateg34) and momentd35).

The fractional phase space can be considered as a phase
space for the fractional systems. This interpretation follows

used to describe the particle systems and medium with nortom the fractional measure that is used in the fractional

integer mass dimension.

IIl. FRACTIONAL SYSTEMS
A. Equations of motion

In Sec. Il we prove that the fractional measuid) de-
pends on the fractional powefg®, p%), and Poisson brackets

integrals.

We can consider the fractional systems in the usual phase
space(qg, p) and in the fractional phase spa@g,p®). In the
second case, the equations of motion for the fractional sys-
tems have more simple form. Therefore we use the fractional
phase space. The fractional space is considered as a space
with the fractional measure that is used in the fractional in-
tegrals.

(22) with fractional powers are more convenient. Therefore “The fractional generalization of the conservative Hamil-
we can co_nS|der a dlfferent_ class of mechanical systems thabnian system is described by the equation

are described by the fractional powers of coordinates and
momenta. We can consider the fractional power of the coor-
dinates as a convenient way to describe systems in the frac- dt o’

tional dimension space.

Let us consider a classical system with the mdssSup-  whereH is a fractional analog of the Hamiltonian. Note that
pose this system is described by the dimensional coordinatdége functionH is the invariant of the motion. Using the frac-
0« and momentap, that satisfy the following equations of tional Poisson bracke{22), we have
motion: o

dgc _ M
dt  opy’

d (o3
dn__ M (36)

dog dp
- = ={ak,H}a ={pi;H}e- (37)
doge _ px  dge — dt dt
—=—, —=f/(q,p,t). 30
i M it (a,p,1) (30)

Here we use Poisson bracké®?). These equations describe

Let go be the characteristic scale in the configuration spacet;he system in the fractional phase spe(qé,p ) For the
po be the characteristic momentui, be the characteristic usual pha;e spacq, p), the f ractional Hamiltonian systems
value of the force, ant} be the typical time. Let us introduce are described by the equations

the dimensionless variables

dac _ (qp0* ™ dH  dpe_ (P ™ oH
e

dt o op, dt o?

The fractional Hamiltonian systems are non-Hamiltonian
systems in the usual phase sp#gep). A classical system
(in the usual phase spade called Hamiltonian if the right-
hand sides of the equations

(38)

Yk
="
“ fo
Here and later we usg, and p, as dimensionless variables.
Using Eq.(30) for dimensional physical variabldsg, p), we
get the equations for dimensionless variables,

- 'K t_l_ F—k
Pk=", _to' k= Fo’

do dpx
— =oa.p, — - =flap), (39
d d dt dt
d—qtk:p—k, Sk = AR (P, (31)
mdt satisfy the following Helmholtz condition0]:
wherem=Mqg/tgp, is the dimensionless mass, and R o o 0 of  of ~0. (40
tF My Ik g P oo do
A=220 (32) . g
Py It is easy to prove that the Helmholtz conditions are not

satisfied. Therefore the fractional Hamiltonian syst@®) is

Using the dimensionless variablés,p,t), we can consider
the fractional generalization of E¢B1) in the form

a non-Hamiltonian system in the usual phase spagce).
The fractional phase space allows us to write the equations of
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motion for the fractional systems in the simple fo(8®). q(t) ~ (t—t)%e, (46)
If we havedqﬁ/dt=pf/m, then the fractional analog of

the Hamiltonian can be considered in the form where the parametey is defined byg;.

Let us consider the special cases of the parametér5,

" it 1/3, 0.6.
H=2> ma+B) +U(Q). (41) (i) If the parameter is equal to 0.5, then we have the
kl=1 solution of Eq.(44) in the form
If B=«a, then we have the fractional analog of the kinetic q(t) = 2(qy, pu.t) (@ + bt + ) (47)

energyT=p*/2m.
The omega function for the syste39) in the usual phase where we use the following notations:
space(q,p) is defined by the equation

201, p1.t) = sgr(|palt - myay), (49)
: (3gk <9fk>
=2k Tk 42 —
E M Py (42 a=|p/m, b=2\|gipsl/m, c=]qy. (49

If the omega function is negativ@ <0, then the system is (i) If the parameter is equal to 1/3, then we have the
called a dissipative system. {2+ 0, then the system is a Solution of Eq.(44) in the form

generalized dissipative system. For the fractional Hamil- P 3p2/3q1/3 3p1/3q2/3
tonian system$38), the omega functior42) is not equal to q(t) = Hgt3+ 1mzl t2+ 1m L t+0;. (50)

zero. Therefore the fractional Hamiltonian systems are the

general dissipative systems in the usual phase space. (iii) If the parametew is equal to 0.6, then we have the
It is known that the non-Hamiltonian and dissipative sys-solution of Eq.(44) in the form

tems(for example F=-yp) are not invariant under the Gal-

ilean transformation. In general, the fractional systems are 0= ( i/SH 3/5>5/3

non-Hamiltonian systems for the usual phase spage). ab= m % :

Therefore the Galilean transformations for the equations of

motion are not considered in this paper. The fractional analf d:=0, thenq(t) , .

logs of the Hamiltonian systems can be invariant under the FOr the usual phase spat p), the equations of motion

fractional generalization of the Galilean transformation.  for the fractional system can be represented in the following
It is not hard to prove that the fractional systefdg) are  form (39). For the free fractional system, we have

connected with the non-Gaussian statistics. Classical dissipa- 1-apa

. L : doc g dpyg

tive and non-Hamiltonian systems can have the canonical — = —=

Gibbs distribution as a solution of the stationary Liouville dt am dt

equationg21]. Using the method§21], it is easy to prove The omega function for the free fractional system is equal to

that some of fractional dissipative systems can have frache following function:

tional Gibbs distributionnon-Gaussian statisjic

1-«
p(Q,p) = exd F — H(q,p) /KT, (43) 0= ma‘“p“- (53

as a sonUon of the fractional L|o_uvn|e 'f’q“?‘t'om-_The_ In general, this function does not equal to zero and the phase
interest in and relevance of fractional kinetic equations is Eféolume of the usual phase space changes. Using45y. we

(51)

~t5/3

0. (52

natural consequence of the realization of the importance o ot
non-Gaussian statistics of many dynamical systems. There
already a substantial literature studying such equations in

one or more space dimensions. Q=

Lo, (54)
(04

wheret;=mdq/p{. If q;=0, then the omega function is pro-
B. Free motion of fractional system portional to 1£. Therefore the velocity of elementary phase
Let us consider the free motion of the fractional systemvomm.e ghange for the frge motion in_the usual phase space
that is defined by the following equations: (q,p) is inversely propomonal to the time. We suppose that
the initial momentum is not equal to zepy # 0.
For the fractional phase spa@g®*,p®), we defing 10] the
omega function(},, in Eq. (23). This “fractional” omega
) ) ) N function is equal to zero for the free motion of fractional
The solutions of these equations with the conditi@yi8) system. Therefore the fractional phase sp@gep®) is more

dg” _p®  dp®_

=—, =0. 44
dt m dt (44)

=g, and p(0)=p; have the form convenient than usual phase spégep).

q*(t) =m'pft+af, p(t) = p;. (45) C. Fractional harmonic oscillator
We can conclude that the free motion of the fractional system Let us consider the fractional harmonic oscillator, which
is described by is defined in Ref[10] by the equations

011102-5
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dg* p* dp* _ - dynamic equation§60)? For the fractal media the harmonic
atom dr o Metdt (55 oscillator is defined by Eq555). For the usual phase space
(q,p), this equation has forrt60). Therefore the systeri60)
wherew is a dimensionless variable. The solutions of thesecan be considered as a system,
equations of motion have the form

dg_p dp
q(t) =acoqwt+ ¢), p*(t)=-mwasin(wt+ @), oM a=—M(w/a)2q, (63)

56
(56) where the dimensionless mag€q, p) =ma(p/q)* @ satisfies
where parametera,¢ are defined by the scaling relation

2a a — 1-«a
_ o 2a, P1 __ bk M(X10,A2p) = (Ap/Ap)**M(q,p).
a= ql + w2m2' tg(P - qu? . (57)

This property can be formulated in the following form. If we
If @=0.5. then we have consider the scale transformation of the characteristic values
' in the form

q(t) = sgricog wt + ¢;)]a? cos(wt + ). (58)

Oo— do/M1,  Po— Po/A2,
If «=1/3,then we havey(t)=a cos’(wt+¢). The fractional _
harmonic oscillator has the following integral of motion: ~ then we have transformation of the mass
P2 ma?gee M — (Ao/\)1 M.

H=_—+————=const. 59
2m 2 59 In the general case, this scaling law can be described by the

Fenormalization group approa¢@3].
Note that the systen63) is a non-Hamiltonian system.
We consider the fractional phase space f¢&%) of Eq. (60)

e E:Irtctnh;eigaicr??hn::‘rzi':ig]r?gllc r?:s(:glzt(gq;”g]e“;u%té%olrse as more fundamental. The fractional harmonic oscillator is
q P P P an oscillator in the fractional phase space that can be consid-

this s_ystem IS alconservanve Hamiltonian nondissipative SYSsred as a fractal medium. Therefore the fractional oscillator
tem in the fracuonallspaceh‘. we use the.usual phase SPACe can be interpreted as an elementary excitation of some fractal
to degcrlbe the frqctlonal harmo'nlc Qscnlaltor! thgn this SYS- medium with noninteger mass dimension.
tem is conservative non-Hamiltonian dissipative system
Note that the conservative non-Hamiltonian systems are con-
sidered in Ref[22]. D. Curved phase space

In the usual phase spa®, p) the equations of motion for
fractional oscillator have the form

This function can be considered as a fractional analog o
Hamiltonian for Eq.(36).

The fractional system with the fractional analogl) of
the Hamiltonian can be considered as a nonlinear system

dg_ 1 ,_ dp_ me?® . with
- . a’ - a. 60
dt  am P dt a ap (60 n g
The omega function for the usual phase spagg) is de- H(a®.p%) = gl Egkl(q,p)pkm +U(@). (64)

fined by Eq.(42) in the form
1 Note that this fractional Hamiltonia{®4) defines a nonlinear
-—a _ o . . .
Q= qp (2% — MPwR). (61) one dlme_an|onaI_S|gma nlod_E\lié‘;JrZﬁE_ﬂzm the_curved phase
am space with metriagy (g, p)=mpg "~ “8. This means that

The elementary phase volume of the usual phase Spaﬁe use the curved phase space. Note that this fractional

changes. The velocity of this change is equal to the omeg amiltonian is used in equations of moti¢88) that define

function. Substituting the solutiob6) into Eq. (61), we e non-Hamiltonian flow in th_e usual phase space.
have The curved phase space is used in the Tuckerman ap-

proach to the non-Hamiltonian statistical mechah&-34.
In their approach the suggested invariant phase space mea-
sure of non-Hamiltonian systems is connected with the met-
ric of the curved phase space. This metric defines the gener-
where we use sfB-cospB=-cosB and cot3  alization of the Poisson brackets. The generalizedn-
=cosp/sin B. Therefore the fractional harmonic oscillator is Hamiltonian bracket is suggested in Ref81,32. For these
a general dissipative system in the usual phase s@@B@®.  brackets, the Jacobi relations will not be satisfied. This re-
For the fractional phase spa@g®,p®), the fractional har-  quires the application of non-Lie algebrés which the Ja-
monic oscillator is conservative nondissipative Hamiltoniancobi identity does not ho)dand analytic quasigrougdsvhich
system. Therefore the fractional phase sp@ep®) is more  are nonassociative generalizations of grous the paper
convenient than usual phase spége). [35], we show that the analogues of Lie algebras and groups
The question arises: What are the fundamer(t@ifierent  for non-Hamiltonian systems are Valya algebfasticom-
from Hamilton principle, which can lead to the system of mutative algebras whose commutants are Lie subalgebras

1 —_
0=""%00cot Awt +¢), (62)

o
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and analytic commutant-associative lodpghose commu- 1 ) ) ) )

tants are associative subloo@soups]. Unfortunately, non- Z[A(q =q,p"=p,Hp(d’ —q,p" ~p.t)
Lie algebras and its representations have not been thoroughly

studied. Nevertheless, the Riemannian treatment of the phase +A(Q' +q,p" -p.Hp(q +q,p’ - p,t)

space is very interesting. This approach allows us to consider

+ A ! - 1 ! + Yt ! - 1 ! + lt
the connection between the fractal dimensional phase space (@ =ap"+pUp(@ ~a.p +p.y

and non-Lie algebras of the vector fields in the space. +A(Q' +q,p" +p,Hp(q" +q,p’ +p,t)]
IV. FRACTIONAL AVERAGE VALUES in the simple form
AND REDUCED DISTRIBUTIONS T.TAAW@ PP, P.D).

A. Fractional average values for configuration space Let us considek particle that is described by generalized

Let us derive the fractional generalization of the equationcoordinatesq,s and generalized momentg,, where s
that defines the average value of the classical observabtel,... m. The operatorT[k] is defined by the relation
A(g,p). T[k]:qulTPkl'"qumTPkm' For the n-particle system phase

The usual average value for the configuration space  space, we use the operafbf1, ... n]=T[1]---T[n].

% (i) Let us define the integral operatdrf(sk and[9K]. The
(A= f_w AX)p(x)dx (65) operatorIAf{k is defined by the equation
can be written in the form ifkf(xk) _ f F(x)da, (X0 . (70)
y oo —0o0
(A= f ABJp()dx+ f ABJp()dx. (66) In this case, fractional integr&68), which defines the aver-

- y . .
age value, can be rewritten in the form

Using the notations R

A= I TAX) p(X).
At (Ao = TAMP() A
(D) = I'(a))_, (y-x)t Let us define the phase space integral openafdd for k

article byl ?[k]=1% 1¢ ---]¢ |@ , .e., we use
P y [ ] Ok1 Pr1 Okm Pkm

1 (7 f(x)dx

12)(y) = , Ta -

EDO=T@), G-y 1K) f(ako P = f (G POdalaepd.  (71)
average valu€66) can be rewritten in the form Here du,(qe,po) is an elementary r2-dimensional phase

(A, = (1EAp)(y) + (1EAD)(Y). volume that is defined by the equation

The fractional generalization of this equation is defined by d4a(dk Py = [al'(&)]*" dog Odpi O -+ Oddg, Ddpi,

(A, = (1%Ap)(y) + (1“Ap)(y). (67) For the Q—particle system pr)ase space, we use the integral
operatorl“[1, ... n]=11]---1°[n].
(iii) Let us define the fractional analog of the average
1~ valuesA for the phase space forparticle system. Using the
<A>a:§ J [(Ap)(y =x) + (Ap)(y +X)]du.(X), (68)  suggested notations, we can define the fractional average
— value by the relation

We can rewrite Eq(67) in the form

where we use (A, =11, ... nIT[L, ... nlAp,. (72)

X“tdx  dx*
M) al(a)

andx® is defined by Eq(7).

(69) In the simple casén=m=1), the fractional average value is
defined by the equation

duy(X) =

A, = d ) TT,A(g, ). 73
B. Fractional average values for phase space A f_w f_m #a(@P)TqTp AG,P)P(0,P) 73
Let us introduce some notations to consider the fractional
average value for phase space.
(i) Let us define the tilde operator§, and T[k]. The

Note that the fractional normalization conditiph0] is a
special case of this definition of the average value

operatorT, is defined by (Do=1.
1 , , T ,
TXk flo.. X ) = 5(f(_ CXp = X ) H X X ). C. Re.duced dlstrllbutlon functions -
In order to derive a fractional analog of the Bogoliubov
This operator allows us to rewrite the functions hierarchy equations we must define the reduced distributions.
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Let us consider a classical system with fixed numbef nm nm
. . . . . . d d qus d dpks
identical particles. Supposk particle is described by the il > dt o dt a0
dimensionlesgeneralized coordinateg,s and generalized t (=1 AU dOks Ks=1 DU IPks

momentapks, wheres=1,....m. We use the following nota- Using Eq.(78), this derivative can be written for the frac-
tions Gy= (G - - Gn) AN Py=(Pias - Prn)- tional powers in the form
The state of this system can be descrlbeditmension—

less nparticle distribution  function p, in the

2mn-dimensional phase space, 8.2, E Gk +AE Fk (81)
dt M o1 OOs  ks1 OPks

Pn(,p,1) = p(d1,P1, - - GnPrst)- o . .
" v men The a-omega function is defined by the equation
We assume that distribution function is invariant under

the permutations of identical particlg36]: :
Q.= 2 (GSpida* AldisFila) (82
p( R [ 79 O [YSRIN 0 (1) 0 [N ,t) = p( -SALP - Qe Prs - - ,t) k,s=1

In this case, the average values for the classical observablegere we use the following notations for the fractional Pois-
can be simplified. We use the tilde distribution functions  son brackets:

and the functiorp, that is defined by the equation e &\ ogaps apioal)”
p1(9,p,t) =p(qq,p1,t) = 12, ... npa(g,p,t). (75 Using Egs(79), (82), and(81), we get the Liouville equa-
. L . o tion in the form
This function is called one-particle reduced distribution func-
tion. The function is defined for then2dimensional phase Ipn
space. Obviously, that one-particle distribution function sat- i Anpn, (84)
isfies the normalization conditioi.O]
. whereA, is Liouville operator that is defined by the equation
1“[1Tp(@.p.) = 1. (76) .
- et Co - S [ A(GP) ., HFD)
Two-particle reduced distribution functigh, is defined Arpn=— > sa” +A Sa” . (85)
by the fractional integration of the-particle distribution ks=1\  90ks IPys
function over allg, andpy, exceptk=1,2:
D2(0,p,t) =p(01,P1, 02, P2 t) :f”‘[3, -..nJpn(a,p,t). B. First fractional Bogoliubov equation
(77) The Bogoliubov equationgl1-14 are equations for the

reduced distribution functions. These equations can be de-
rived from the Liouville equation. Let us derive the first frac-
V. FRACTIONAL LIOUVILLE AND BOGOLIUBOV tional Bogoliubov equatio@3) from the fractional Liouville
EQUATIONS equation(84).
In order to derive the equation for the functign we
differentiate Eq.(75), which defines one-particle reduced
The fractional generalization of the Liouville equation is distribution:
derived in Ref[10]. Let us consider the Hamilton equations

A. Fractional Liouville equation

for n-particle system in the form dpy _ 0~ 92, . =12, ... ] pn
dq dpﬁ p &t Nipn Y e .
PMks _ ~kfqya S _ K o ~a
dt =Gs(q,pY, dt =AF(q",p1). (78) Using the Liouville equatior{84) for n-particle distribution

. . o _ _ function’p,, we have
The evolution ofn-particle distribution functionp,, is de-

scribed by the Liouville equation. The fractional Liouville 5,3 -
equation 10] for n-particle distribution function has the form o =102, ... n]JAmp(9,p,1). (86)
dpn +Q,5,=0. (79) Substituting Eq(85) in Eq. (86), we get
dt - -
This equation can be derivgd Q] from the fractional nor- @ = _ia[z, ]E ( (Gspn) Aa(FSf”)). (87)
malization condition ot k1 \ 90ks Pxs
o - Let us consider in Eq87) the integration oveqys andpys
ML, nlpa(@,pD = 1. (80) for the k-particle term. Since the coordinates and momenta
In the Liouville equationd/dt is a total time derivative, are independent variables, we can derive
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1
1@ ) =——(G) % =0. 88 oy = —I192](
[qks](? ks s aF(a)( spn) (88) S ]ﬁn) 0% o [ ] Pz)
Here we use the condition Here we use definitiofi77) of two-particle distribution func-
tion. Sincep, is independent of},, p,, we can change the
lim p,=0, (89 order of the integrations and the differentiations:
qk —+0o0
which follows from the normalization condition. If lim{B9) Fi% )= —1[2]F1%p,.
is not equal to zero, then the integration over phase space is P1s is
equal to infinity. Similarly, we have Finally, we obtain the equation for one-particle reduced
distribution function,
“[pks]( p )> = (520
app. Fspn al'(@) V7= 77 dp " AGH " aF
ks ( ) % + E ((9 sfl) +AE (asapl) - (n_ 1)A|(’[32)
Then all terms in Eq(87) with k=2, ... n are equal to zero. s1 Mis =1 Pis
We have only term fok=1. Therefore Eq(87) has the form (93)
m 1~ Here I(p,) is a term with two-particle reduced distribution
- dGspn) ., HFspn) P2
Po_Si2, ... ,n]< LA )| (90 function,
at S aq:I_S aplS
m
Since the variabley, is an independent o5, ...q, and (o) =— > fa[z]péz‘f,z_ (94)
P2, ...Pn the first term in Eq(90) can be written in the form =1 IPTs
m a(Glp ) m Equation(93) is called &first fractional Bogoliubov equation
D2, ... n—="=> Gl 1912, ... nIpn (first equation of Bogoliubov chajn

s <1 90 Let us consider the physical meaning of the teii@,).
&(Glp) The term|(p,)du,(q,p) is a velocity of particle number
= = v change in #n-dimensional elementary phase volume
=1 i due,(d1,P2,92,p0). This change is caused by the interactions
between particles. I&=1, then we have the first Bogoliubov

The forceFl acts on the first particle. This force is a sum i S
equation for non-Hamiltonian systems.

of the internal forcesl;:lk-Fs(q1 P1,0x: Pk, t), and the exter-
nal forceFle FS(as,p1,t). In the case of binary interactions,

we have C. Second fractional Bogoliubov equation
N The fractional Liouville equation allows us to derive
Fl=fles S Fk (91) equation for two-particle reduced distribution functipnin
) the form
. . . 2
Using Eq.(91), the second term in EG90) can be rewrit- dp - ~
ten in the form EZ = k% Aypz + A1zpy + c(N)Al(p3), (95
ia[z n]<‘7( Pn)) wherec(n)=(n-1)(n-2)/2, andAy is one-particle Liouville
T\ apts operator,
. P " aFYp " a(G% d
=192, ... ,n]( ( o) Z sapn)) APy =-— 2 ( 552) _AE ( PZ) ,
’?pls k= IP1s =1 s s=1 é’pks
AF%p 1) ! a and A4, is two-particle Liouville operator,
=P S 2, L n](F Y. (92

apls k=2 apls

~ . . Ayopr =
Since then-patrticle distribution functiorp,, is a symmetric ! s1 9Pis

function for the identical particles, we have that ai-1)
terms of sum(92) are identical. Therefore the sum can be
replaced by one term with the multiplién—1):

m
J
Fézf’z) +AY _a(Fglf’z),
S J 2s

and I(py) is a term with the three-particle reduced
distribution,

m 13~ 23~
n ~ d(F3°ps) . d(FSp3)
S . 1(Bg) =2, |“[3]< el B (96)
EI [2,...0n] [2,...0n s =1 s IP5s
k=2 1s 13
~ L The derivation of Eq(95) is the analogous to the derivation
Using 192, ... n]=1%2]1%3, ... n], we have of Eq. (93).
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It is easy to see that Eg@3) and(95) are not closed. The Mdo toFo  Mdp
i istributi i tp=—, A=—=—. (101
system of equations for the reduced distribution functions are 0 0 | D P2
called the Bogoliubov hierarchy equations. 0 0 0
Let us use the conditiopi/M=KkT, for the characteristic
VI. FRACTIONAL VLASOV EQUATION momentump,. Note that the conditiop?/M=KT can be re-
AND DEBYE RADIUS alized for non-Hamiltonian and dissipative syste[rﬂﬂ.
) _ The first fractional Bogoliubov equatiof®3) for the di-
A. Fractional Vlasov equation mensionless one-particle distributipphas the following di-
In this section, we derive the fractional analog of the Vla-mensionless forni38]:
sov equation from the first fractional Bogoliubov equation. 3 5 3 3
i i isti i - dp Apiep A(F3p
Let usI corr]1_5|der the par:tlcles as statistical independent sys I9p1 > (plif’l) +AE ( sfl) —ABIGy). (102
tems. In this case, we have 7 S ot = &
P(A1,P1,d2,P2,1) = p(A1,P1, (A2, P2, ). (970 The dimensionless first Bogoliubov equatitt02) has two
Substituting Eq(97) in Eq. (94), we get characteristic parameters,
m tOFO MroFo roFO 3
d - .t A=—=——7—=—"—, B=ngry". (103
(o) == 2 Al T2 52, o P KT o
S

Let us consider the coefficiem8. It is known [18,19 that
fractal particle system and fractal media are described by the
power law relation(29):

Here we use the notatiopk] for the distribution function
p(Qk, Pk, t). As the result we have the effective forces,

FE(qupot) = 1[20F 2], n(r) =nor®, (104
In this case, we can rewrite the teli®4) in the form whereD <3 andn, is the D-dimensional concentration of
5 the D-dimensional distribution of particles. The dimensbn
1(5o) = — pleffy 98 of fractal system is connected with order of the fractional
(p2) d i“s(?)l s ) (%8) integralsa by D=3a. The concentratiomy can be defined
o ) by theD-dimensional mass densiky np=k/M which is used
Substituting Eq(98) in Eq. (93), we get in Egs.(26) and(29). To calculate the mass fractal dimension
P . m D and concentratiom,, we can take the logarithm of both
d(Ggp d - i .
ﬂ+2 ( sfl) +AS _a[(Fie_'_bFieff)pl]:oy sides of Eq.(104). When we graph Ifn) as a function of
7/ ST =1 9P1s In(r), we have
(99 In(n) =D In(r) + In(ng),

whereb=n-1. This equation is a closed equation for one-g,4 we get a value of the fractal dimensidnof fractal

particle distribution function with the external foréé® and media and parametey, Therefore these values can be mea-
H leff ; :
the effective force="¢"". Equation(99) can be called a frac- g red for homogeneous fractal media.

tional Vlasov equatiofi37]. _ Let us consider the fractional systems with the force
The fractional Liouville, Bogoliubov, and Vlasov equa-
tion are a better approximation than its classical analogs for e? 1
the systems with the fractional phase spaiths fractal di- Fu= Ao 2 -1 (105
ofo

mensional spacgsFor example, the systems that live on
some fractals(spaces with the fractal dimensionsan be \yherer, andr, are dimensional values of coordinates.lf

described by the suggested fractional equations. =1, then we have the usual electrostatic interaction. In this
case, the Gauss theorem for the fractional space is not satis-
B. Debye radius fied. If 26=3a—1, then the Gauss theorem for the fractional

In this section, we consider the Debye radius for the frac>Pace 15 satisfied. The radiug and the forcef, are con-

tional systems that are defined by the equations nected by the equation

e 1

dqfs pEs dpkas k F0= - (106)
—keo Tk Mo AR 1 2
at m' dt <(a,p), (100 4megry

Using the relationAB~ 1, we have the characteristic ra-

where we use the dimensionless varialg®,,Fi.t. Letro  dius of the interaction in the fractal media,
=, be the radius of the interaction. Heme=Mry/typy is a

dimensionless mass, whel is a particle mass. Using 3a-1 0K
=1, we get ro=rp= &, ’ (107
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which can be called a fractional Debye radius. If the particlethe canonical Gibbs distribution as a solution of the station-
systems or media have the integer mass dimenBier8,  ary Liouville equations for this dissipative systd@i]. Us-
thena=1, and we get the usual equation for the Debye raing the method$21], it is easy to prove that some fractional
dius [39]. The fractional radius characterizes the scgle dissipative systems can have fractional analog of the Gibbs
=rg of the fractal media or fractal system with nonimegerdistribution(non-Gaussian Statislias a solution of the frac-
mass dimension. tional Liouville equations. Using the methofd&l], it is easy
to find the stationary solutions of the fractional Bogoliubov
equations for the fractional systems.
VII. CONCLUSION Note that the quantization of the fractional systems is a
In this paper, we consider the fractional generalizations o uantization of r;on—}-lamﬂtoman d!ssmauve systems. Using
the ph | ’ the oh | I t and the P the _method, which is _suggested in Re[fé_.2—44], we can
€ phase volume, the pnase volume element, and e FOigs,jize the Weyl quantization for the fractional systems. The
son brackets. These generalizations lead us to the fraction ggested fractional Hamilton and Liouville equations allow

analog of the phase space. The space can be considered agsdio derive the fractional generalization for the quantum
fractal dimensional space. We consider systems on the fragystems by methods suggested in Rp€—44.

tional phase space and the fractional analogs of the Hamilton™ | this paper the fractional analogs of the Bogoliubov hi-
equations. The physical interpretation of the fractional phaserarchy equations are derived. In order to derive this analog
space is discussed. The fractional generalization of the avefye use the fractional Liouville equatidd 0], we define the
age values is derived. fractional average values and the fractional reduced distribu-

It is known that the fractional derivative of a constant tion functions. The fractional analog of the Vlasov equation
need not be zero. This relation leads to the correlation beand the Debye radius are considered.
tween coordinateg and momentunp. Thereforeq andp are The fractional Bogoliubov hierarchy equation can be used
not independent variables in the usual sense. As the resuth derive the Enskog transport equation. The fractional ana-
the generalization of the Poisson brackets with fractional delog of the hydrodynamics equations can be derived from the
rivatives (15) is not canonical. In order to derive equations first fractional Bogoliubov equation. These equations will be
with fractional derivatives we must have a generalization ofconsidered in the next paper.
Darboux theorenj40] for symplectic form with fractional It is known that the Fokker-Planck equation can be
exterior derivatives. However, this generalization is an opemlerived from the Bogoliubov hierarchy equatiof&. The
question at this moment. In order to define Poisson bracketsactional Fokker-Planck equation can be derived from the
with the usual relations for the coordinates and the momentfactional Bogoliubov equation. However, this fractional
we can use Poisson bracké®?) with the fractional power Fokker-Planck equation can be differed from the equation
of coordinates and momenta. known in the literaturg¢5—7].

Note that the dissipative and non-Hamiltonian systems The quantum generalization of the suggested fractional
can have stationary states of the Hamiltonian systgtf Bogoliubov equation can be considered by the methods that
Classical dissipative and non-Hamiltonian systems can havare suggested in Refgl2-44].
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